<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
</head>
<body text="#000000" bgcolor="#FFFFFF">
<p>
<style type="text/css">p { margin-bottom: 0.1in; direction: ltr; color: rgb(0, 0, 0); line-height: 120%; }p.western { font-family: "Times New Roman",serif; font-size: 12pt; }p.cjk { font-family: "Times New Roman",serif; font-size: 12pt; }p.ctl { font-family: "Times New Roman",serif; font-size: 12pt; }a:visited { color: rgb(128, 0, 128); }a.western:visited { }a.cjk:visited { }a.ctl:visited { }a:link { color: rgb(0, 0, 255); }</style>
</p>
<p class="western" style="margin-bottom: 0in; line-height: 150%"
align="justify">
<font color="#000000"><font face="Arial, sans-serif"><font
style="font-size: 10pt" size="2"><span lang="en-US"><b>The
Research Group on Applied Mathematics with emphasis on
Optimization
</b></span></font></font></font><font color="#000000"><font
face="Arial, sans-serif"><font style="font-size: 10pt"
size="2"><span lang="en-US">at
the Faculty of Mathematics of the University of Vienna,
headed by
Radu Ioan Bo</span></font></font></font><font
color="#000000"><font face="Arial, sans-serif"><font
style="font-size: 10pt" size="2"><span lang="ro-RO">ț,
has its core research areas in Nonsmooth and Convex
Optimization.</span></font></font></font><font
color="#000000"><font face="Arial, sans-serif"><font
style="font-size: 10pt" size="2">
Currently it offers</font></font></font></p>
<p class="western" style="margin-bottom: 0in; line-height: 150%"
align="justify">
<br>
</p>
<p style="margin-bottom: 0in; line-height: 150%" align="center"
lang="en-US">
<font face="Arial, sans-serif"><font style="font-size: 11pt"
size="2"><b>1
PostDoc Position (18 months) at the</b></font></font></p>
<p style="margin-bottom: 0in; line-height: 150%" align="center"
lang="en-US">
<font face="Arial, sans-serif"><font style="font-size: 11pt"
size="2"><b>Faculty
of Mathematics, University of Vienna</b></font></font></p>
<p style="margin-bottom: 0in; line-height: 150%" align="justify"
lang="en-US">
<br>
</p>
<p class="western" style="margin-bottom: 0in; line-height: 150%"
align="justify">
<font face="Arial, sans-serif"><font style="font-size: 10pt"
size="2"><span lang="en-US">within
the </span></font></font><font face="Arial, sans-serif"><font
style="font-size: 10pt" size="2"><span lang="en-US"><b>FWF</b></span></font></font><font
face="Arial, sans-serif"><font style="font-size: 10pt" size="2"><span
lang="en-US">-funded
research project </span></font></font><font face="Arial,
sans-serif"><font style="font-size: 10pt" size="2"><span
lang="en-US"><b>Employing
Recent Outcomes in Proximal Theory Outside the Comfort
Zone.</b></span></font></font><font face="Arial,
sans-serif"><font style="font-size: 10pt" size="2"><span
lang="en-US">
</span></font></font>
</p>
<p style="margin-bottom: 0in; font-weight: normal; line-height:
150%" align="justify" lang="en-US">
<br>
</p>
<p style="margin-bottom: 0in; line-height: 150%" align="justify"
lang="en-GB">
<font face="Arial, sans-serif"><font style="font-size: 10pt"
size="2"><span style="font-weight: normal">The
main scientific target of the project is to employ recent
advances
concerning some classical techniques used so far mainly for
iteratively minimizing convex functions in Hilbert spaces to
research
fields lying </span></font></font><font face="Arial,
sans-serif"><font style="font-size: 10pt" size="2"><span
lang="en-US"><span style="font-weight: normal">outside
their comfort zone. These methods evolve around the notion
of
proximality, which relies on evaluating a certain
regularization of
the addressed mathematical object. Due to its reliability,
simplicity
and accuracy, the proximal theory was successfully
employed for
solving </span></span></font></font><font face="Arial,
sans-serif"><font style="font-size: 10pt" size="2"><span
style="font-weight: normal">nonsmooth
convex optimization problems and monotone inclusions with
complex
structures as well, proving a strong positive impact on the
treatment
of real-life applications with high-dimensional data. </span></font></font>
</p>
<p style="margin-bottom: 0in; line-height: 150%" align="justify"
lang="en-GB">
<font face="Arial, sans-serif"><font style="font-size: 10pt"
size="2"><span style="font-weight: normal">The
research themes to be addressed in this project range from
the
employment of the paradigm of proximality </span></font></font><font
face="Arial, sans-serif"><font style="font-size: 10pt" size="2"><span
lang="en-US"><span style="font-weight: normal">in
broader frameworks like considering generalized distances
and
addressing the solving of nonsmooth and nonconvex
optimization
problems to the approach of monotone inclusions problems
and
optimization problems via first- and second-order
dynamical systems.
The expected results should have impact beyond the
corresponding
research areas both in mathematical fields like ordinary
differential
equations, partial differential equations, optimal
control,
functional analysis, game theory, equilibrium problems and
optimal
transport theory, and in the solving of real-life problems
arising in
optimal location selection, image processing, machine
learning,
quantification of risk, network communication and video
processing.</span></span></font></font></p>
<p class="western" style="margin-bottom: 0in; line-height: 150%"
align="justify" lang="en-US">
<br>
</p>
<p class="western" style="margin-bottom: 0in; line-height: 150%"
align="justify">
<font face="Arial, sans-serif"><font style="font-size: 10pt"
size="2"><span lang="en-US">The
position is available from </span></font></font><font
face="Arial, sans-serif"><font style="font-size: 10pt" size="2"><span
lang="en-US"><b>April
</b></span></font></font><font face="Arial, sans-serif"><font
style="font-size: 10pt" size="2"><span lang="en-US"><b>1st,
2018</b></span></font></font><font face="Arial,
sans-serif"><font style="font-size: 10pt" size="2"><span
lang="en-US">.
The salary is as suggested by the FWF according to a PostDoc
position. The working load for the project is 40 hours per
week. The
deadline for application is </span></font></font><font
face="Arial, sans-serif"><font style="font-size: 10pt" size="2"><span
lang="en-US"><b>March</b></span></font></font><font
face="Arial, sans-serif"><font style="font-size: 10pt" size="2"><span
lang="en-US"><b>
15th, 2018</b></span></font></font><font face="Arial,
sans-serif"><font style="font-size: 10pt" size="2"><span
lang="en-US">.</span></font></font></p>
<p class="western" style="margin-bottom: 0in; line-height: 150%"
align="justify">
<br>
</p>
<p class="western" style="margin-bottom: 0in; line-height: 150%"
align="justify" lang="en-US">
<font face="Arial, sans-serif"><font style="font-size: 10pt"
size="2"><b>Required
Qualifications</b></font></font></p>
<p class="western" style="margin-bottom: 0in; line-height: 150%"
align="justify">
<font color="#000000"><font face="Arial, sans-serif"><font
style="font-size: 10pt" size="2"><span lang="en-US">The
candidates should have a PhD degree in Mathematics, a
solid
theoretical background in analysis and mathematical
optimization, and
programming skills. Fluency in the English language has to
be proven.
Applications (including a letter of motivation, curriculum
vitae, the
PhD thesis, peer reviewed publications, copies of academic
certificates and two letters of recommendation) should be
sent to:
</span></font></font></font><font color="#0000ff"><u><a
class="western" href="mailto:min.hadler@univie.ac.at"><font
face="Arial, sans-serif"><font style="font-size: 10pt"
size="2"><span lang="en-US">min.hadler@univie.ac.at</span></font></font></a></u></font><font
color="#000000"><font face="Arial, sans-serif"><font
style="font-size: 10pt" size="2"><span lang="en-US">.
More information can be found on </span></font></font></font><font
color="#0000ff"><u><font face="Arial, sans-serif"><font
style="font-size: 10pt" size="2"><span lang="en-US"><a
class="western"
href="http://www.mat.univie.ac.at/%7Erabot">http://www.mat.univie.ac.at/~rabot</a>.</span></font></font></u></font></p>
<br>
</body>
</html>