<html>
  <head>

    <meta http-equiv="content-type" content="text/html; charset=utf-8">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    <p>
      <style type="text/css">p { margin-bottom: 0.1in; direction: ltr; color: rgb(0, 0, 0); line-height: 120%; }p.western { font-family: "Times New Roman",serif; font-size: 12pt; }p.cjk { font-family: "Times New Roman",serif; font-size: 12pt; }p.ctl { font-family: "Times New Roman",serif; font-size: 12pt; }a:visited { color: rgb(128, 0, 128); }a.western:visited {  }a.cjk:visited {  }a.ctl:visited {  }a:link { color: rgb(0, 0, 255); }</style>
    </p>
    <p class="western" style="margin-bottom: 0in; line-height: 150%"
      align="justify">
      <font color="#000000"><font face="Arial, sans-serif"><font
            style="font-size: 10pt" size="2"><span lang="en-US"><b>The
                Research Group on Applied Mathematics with emphasis on
                Optimization
              </b></span></font></font></font><font color="#000000"><font
          face="Arial, sans-serif"><font style="font-size: 10pt"
            size="2"><span lang="en-US">at
              the Faculty of Mathematics of the University of Vienna,
              headed by
              Radu Ioan Bo</span></font></font></font><font
        color="#000000"><font face="Arial, sans-serif"><font
            style="font-size: 10pt" size="2"><span lang="ro-RO">ț,
              has its core research areas in Nonsmooth and Convex
              Optimization.</span></font></font></font><font
        color="#000000"><font face="Arial, sans-serif"><font
            style="font-size: 10pt" size="2">
            Currently it offers</font></font></font></p>
    <p class="western" style="margin-bottom: 0in; line-height: 150%"
      align="justify">
      <br>
    </p>
    <p style="margin-bottom: 0in; line-height: 150%" align="center"
      lang="en-US">
      <font face="Arial, sans-serif"><font style="font-size: 11pt"
          size="2"><b>1
            PostDoc Position (18 months) at the</b></font></font></p>
    <p style="margin-bottom: 0in; line-height: 150%" align="center"
      lang="en-US">
      <font face="Arial, sans-serif"><font style="font-size: 11pt"
          size="2"><b>Faculty
            of Mathematics, University of Vienna</b></font></font></p>
    <p style="margin-bottom: 0in; line-height: 150%" align="justify"
      lang="en-US">
      <br>
    </p>
    <p class="western" style="margin-bottom: 0in; line-height: 150%"
      align="justify">
      <font face="Arial, sans-serif"><font style="font-size: 10pt"
          size="2"><span lang="en-US">within
            the </span></font></font><font face="Arial, sans-serif"><font
          style="font-size: 10pt" size="2"><span lang="en-US"><b>FWF</b></span></font></font><font
        face="Arial, sans-serif"><font style="font-size: 10pt" size="2"><span
            lang="en-US">-funded
            research project </span></font></font><font face="Arial,
        sans-serif"><font style="font-size: 10pt" size="2"><span
            lang="en-US"><b>Employing
              Recent Outcomes in Proximal Theory Outside the Comfort
              Zone.</b></span></font></font><font face="Arial,
        sans-serif"><font style="font-size: 10pt" size="2"><span
            lang="en-US">
          </span></font></font>
    </p>
    <p style="margin-bottom: 0in; font-weight: normal; line-height:
      150%" align="justify" lang="en-US">
      <br>
    </p>
    <p style="margin-bottom: 0in; line-height: 150%" align="justify"
      lang="en-GB">
      <font face="Arial, sans-serif"><font style="font-size: 10pt"
          size="2"><span style="font-weight: normal">The
            main scientific target of the project is to employ recent
            advances
            concerning some classical techniques used so far mainly for
            iteratively minimizing convex functions in Hilbert spaces to
            research
            fields lying </span></font></font><font face="Arial,
        sans-serif"><font style="font-size: 10pt" size="2"><span
            lang="en-US"><span style="font-weight: normal">outside
              their comfort zone. These methods evolve around the notion
              of
              proximality, which relies on evaluating a certain
              regularization of
              the addressed mathematical object. Due to its reliability,
              simplicity
              and accuracy, the proximal theory was successfully
              employed for
              solving </span></span></font></font><font face="Arial,
        sans-serif"><font style="font-size: 10pt" size="2"><span
            style="font-weight: normal">nonsmooth
            convex optimization problems and monotone inclusions with
            complex
            structures as well, proving a strong positive impact on the
            treatment
            of real-life applications with high-dimensional data. </span></font></font>
    </p>
    <p style="margin-bottom: 0in; line-height: 150%" align="justify"
      lang="en-GB">
      <font face="Arial, sans-serif"><font style="font-size: 10pt"
          size="2"><span style="font-weight: normal">The
            research themes to be addressed in this project range from
            the
            employment of the paradigm of proximality </span></font></font><font
        face="Arial, sans-serif"><font style="font-size: 10pt" size="2"><span
            lang="en-US"><span style="font-weight: normal">in
              broader frameworks like considering generalized distances
              and
              addressing the solving of nonsmooth and nonconvex
              optimization
              problems to the approach of monotone inclusions problems
              and
              optimization problems via first- and second-order
              dynamical systems.
              The expected results should have impact beyond the
              corresponding
              research areas both in mathematical fields like ordinary
              differential
              equations, partial differential equations, optimal
              control,
              functional analysis, game theory, equilibrium problems and
              optimal
              transport theory, and in the solving of real-life problems
              arising in
              optimal location selection, image processing, machine
              learning,
              quantification of risk, network communication and video
              processing.</span></span></font></font></p>
    <p class="western" style="margin-bottom: 0in; line-height: 150%"
      align="justify" lang="en-US">
      <br>
    </p>
    <p class="western" style="margin-bottom: 0in; line-height: 150%"
      align="justify">
      <font face="Arial, sans-serif"><font style="font-size: 10pt"
          size="2"><span lang="en-US">The
            position is available from </span></font></font><font
        face="Arial, sans-serif"><font style="font-size: 10pt" size="2"><span
            lang="en-US"><b>April
            </b></span></font></font><font face="Arial, sans-serif"><font
          style="font-size: 10pt" size="2"><span lang="en-US"><b>1st,
              2018</b></span></font></font><font face="Arial,
        sans-serif"><font style="font-size: 10pt" size="2"><span
            lang="en-US">.
            The salary is as suggested by the FWF according to a PostDoc
            position. The working load for the project is 40 hours per
            week. The
            deadline for application is </span></font></font><font
        face="Arial, sans-serif"><font style="font-size: 10pt" size="2"><span
            lang="en-US"><b>March</b></span></font></font><font
        face="Arial, sans-serif"><font style="font-size: 10pt" size="2"><span
            lang="en-US"><b>
              15th, 2018</b></span></font></font><font face="Arial,
        sans-serif"><font style="font-size: 10pt" size="2"><span
            lang="en-US">.</span></font></font></p>
    <p class="western" style="margin-bottom: 0in; line-height: 150%"
      align="justify">
      <br>
    </p>
    <p class="western" style="margin-bottom: 0in; line-height: 150%"
      align="justify" lang="en-US">
      <font face="Arial, sans-serif"><font style="font-size: 10pt"
          size="2"><b>Required
            Qualifications</b></font></font></p>
    <p class="western" style="margin-bottom: 0in; line-height: 150%"
      align="justify">
      <font color="#000000"><font face="Arial, sans-serif"><font
            style="font-size: 10pt" size="2"><span lang="en-US">The
              candidates should have a PhD degree in Mathematics, a
              solid
              theoretical background in analysis and mathematical
              optimization, and
              programming skills. Fluency in the English language has to
              be proven.
              Applications (including a letter of motivation, curriculum
              vitae, the
              PhD thesis, peer reviewed publications, copies of academic
              certificates and two letters of recommendation) should be
              sent to:
            </span></font></font></font><font color="#0000ff"><u><a
            class="western" href="mailto:min.hadler@univie.ac.at"><font
              face="Arial, sans-serif"><font style="font-size: 10pt"
                size="2"><span lang="en-US">min.hadler@univie.ac.at</span></font></font></a></u></font><font
        color="#000000"><font face="Arial, sans-serif"><font
            style="font-size: 10pt" size="2"><span lang="en-US">.
              More information can be found on </span></font></font></font><font
        color="#0000ff"><u><font face="Arial, sans-serif"><font
              style="font-size: 10pt" size="2"><span lang="en-US"><a
                  class="western"
                  href="http://www.mat.univie.ac.at/%7Erabot">http://www.mat.univie.ac.at/~rabot</a>.</span></font></font></u></font></p>
    <br>
  </body>
</html>