<html>
  <head>

    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <p
style="margin-top:0pt;margin-bottom:6pt;font-family:Arial;font-size:11.0pt"
      lang="en-US">WIAS invites applications for a </p>
    <p
style="margin-top:6pt;margin-bottom:6pt;font-family:Arial;font-size:20.0pt"
      lang="en-US"><span style="font-weight:bold">PhD student position
        (f/m/d)</span></p>
    <p
style="margin-top:0pt;margin-bottom:12pt;font-family:Arial;font-size:11.0pt"
      lang="en-US"><span style="mso-spacerun:yes"> </span>(<span
        style="font-weight:
        bold">Ref. 22/17</span>)</p>
    <p
style="margin-top:6pt;margin-bottom:6pt;font-family:Arial;font-size:11.0pt"
      lang="en-US">in the Research Group</p>
    <p
style="margin-top:6pt;margin-bottom:12pt;font-family:Arial;font-size:14.0pt"
      lang="en-US"><span style="font-weight:bold">“Nonlinear
        Optimization and Inverse
        Problems”</span></p>
    <p style="margin:0in;font-family:Arial" lang="en-US"><span
        style="font-size:11.0pt">(Head:
        Prof. Dr. D. Hömberg) </span><span
        style="font-weight:bold;font-size:10.5pt">starting at
        the earliest possible date.</span></p>
    <p
style="margin-top:6pt;margin-bottom:6pt;font-family:Arial;font-size:11.0pt;color:black"
      lang="en-US">The position is tied to the project</p>
    <p
style="margin-top:6pt;margin-bottom:0pt;font-family:Arial;font-size:11.0pt;color:black"
      lang="en-US"><span style="font-weight:bold">“Machine Learning for
        Inverse Problems </span></p>
    <p
style="margin-top:0pt;margin-bottom:6pt;font-family:Arial;font-size:11.0pt;color:black"
      lang="en-US"><span style="font-weight:bold">with continuous
        normalizing flows and mean field games”</span></p>
    <p
style="margin-top:6pt;margin-bottom:6pt;font-family:Arial;font-size:11.0pt;color:black"
      lang="en-US">PI: PD Dr. Martin Eigel). The goal of the project is
      the development and analysis of Neural Networks for invertible
      measure
      transport such as normalizing flows. Connections to optimal
      transport, optimal
      control, mean field games and stochastic differential equations
      will be
      examined. Moreover, low-rank tensor formats will be used in a
      hybrid method. In
      collaboration with the PTB, the developed methods will be applied
      to inverse
      problems for geometry parameters the quality control of
      semiconductor manufacturing.</p>
    <p
style="margin-top:0pt;margin-bottom:6pt;font-family:Arial;font-size:11.0pt;color:black"
      lang="en-US">We are looking for candidates with a solid background
      in applied mathematics, theoretical chemistry, theoretical
      physics, or
      electrical engineering. They are expected to be familiar with some
      of the
      topics numerical analysis (for differential equations),
      quantification of
      uncertainty, statistical learning theory, high-dimensional
      approximations,
      stochastic analysis. Applicants are also expected to have
      experience with at
      least one of the popular Python frameworks for machine learning.
      Previous
      experience in continuum mechanics, thermodynamics, homogenization
      theory,
      software engineering, or machine learning are beneficial.</p>
    <p
style="margin-top:0pt;margin-bottom:6pt;font-family:Arial;font-size:11.0pt;color:black"
      lang="en-US">A completed scientific university degree (master’s
      degree) in mathematics or a closely related field is required as
      well as
      demonstrable programming experience preferably in python and good
      communication
      skills in English. An applied mathematical education (in
      particular numerical
      analysis, functional analysis or stochastic analysis) is required
      for a
      successful application. Moreover, experience in the implementation
      of machine
      learning models and numerical algorithms is beneficial.</p>
    <p
style="margin-top:6pt;margin-bottom:6pt;font-family:Arial;font-size:11.0pt"
      lang="en-US">Queries about the project can be directed to Dr. M.
      Eigel (<a href="mailto:eigel@wias-berlin.de?subject=22-03">Martin.Eigel@wias-berlin.de</a>).</p>
    <p
style="margin-top:6pt;margin-bottom:6pt;font-family:Arial;font-size:11.0pt"><span
        lang="en-US">The appointment is limited for three years until
        31.03.2025. </span><span lang="de">The reduced work schedule is
        29,25 hours per week, and the salary is
        according to the German TVoeD Bund scale.</span></p>
    <p
style="margin-top:0pt;margin-bottom:6pt;font-family:Arial;font-size:11.0pt"
      lang="en-US">The Institute aims to increase the proportion of
      women in this
      field, so applications from women are particularly welcome. Among
      equally
      qualified applicants, disabled candidates will be given
      preference.<span style="mso-spacerun:yes">  </span></p>
    <p
style="margin-top:0pt;margin-bottom:6pt;font-family:Arial;font-size:11.0pt"
      lang="en-US">Please upload your complete application documents
      (motivation
      letter, detailed CV, certificates, list of MSc courses and grades,
      copy of the
      master‘s thesis or draft, two recommendation contacts) via our <a
        href="https://short.sg/j/17430658">applicant portal</a> as soon
      as possible but
      not later than <span style="font-weight:bold">May 15, 2022</span>
      using
      the button "<a href="https://short.sg/a/17430658">Apply online</a>".</p>
    <p style="margin:0in;font-family:Arial;font-size:11.0pt"
      lang="en-US"><span style="font-weight:bold">We are looking forward
        to your application!</span></p>
    <p
style="margin-top:0pt;margin-bottom:6pt;line-height:13pt;font-family:Arial;font-size:11.0pt;color:#00000A"> </p>
    <p style="margin:0in;font-size:11.0pt"><span
        style="font-weight:bold;
        font-family:Arial">See here for more information:<span
          style="mso-spacerun:yes">  </span></span><a
        href="https://short.sg/j/17430658"><span
          style="font-family:Calibri">https://short.sg/j/17430658</span></a></p>
    <pre class="moz-signature" cols="72">-- 
Administration
Weierstrass Institute for Applied Analysis and Stochastics
Mohrenstrasse 39
10117 Berlin, Germany
Phone: +49 (0)30  20372 557
Fax: +49 (0)30 20372 329
URL: <a class="moz-txt-link-freetext" href="http://www.wias-berlin.de/~sill/?lang=1">http://www.wias-berlin.de/~sill/?lang=1</a>
</pre>
  </body>
</html>