<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
</head>
<body>
<p
style="margin-left:.375in;margin-top:0pt;margin-bottom:6pt;font-family:Arial;font-size:11.0pt;color:#00000A">WIAS
invites applications for a </p>
<p
style="margin-left:.375in;margin-top:6pt;margin-bottom:6pt;font-family:Arial;font-size:20.0pt;color:#00000A"><span
style="font-weight:bold">Postdoc position
(f/m/d)</span></p>
<p
style="margin-left:.375in;margin-top:0pt;margin-bottom:12pt;font-family:
Arial;font-size:11.0pt;color:black"><span style="font-weight:bold">(Ref.
22/32)</span></p>
<p
style="margin-left:.375in;margin-top:0pt;margin-bottom:4pt;font-family:Arial;font-size:11.0pt;color:#00000A"><span
style="font-weight:bold">at the
intersection of the areas machine learning / mathematical
optimization /
optimal control with a focus on robustness under distribution
shift</span> in
Berlin, Germany. </p>
<p
style="margin-left:.375in;margin-top:6pt;margin-bottom:6pt;font-family:Arial;font-size:11.0pt;color:black">The
position is associated with the third-party
funded research project lead by Dr. Jia-Jie Zhu (WIAS Berlin) and
Prof. Michael
Hintermüller (WIAS/ Humboldt-Universität zu Berlin)</p>
<p
style="margin-left:.375in;margin-top:6pt;margin-bottom:6pt;font-family:Arial;font-size:11.0pt;color:black"><span
style="font-weight:bold">Data-driven Robust
Model Predictive Control under Distribution Shift</span></p>
<p
style="margin-left:.375in;margin-top:6pt;margin-bottom:6pt;font-family:Arial;font-size:11.0pt"><span
style="color:black">within the Berlin Mathematics
Research Center MATH+</span><span style="color:#00000A"> lead by
Dr. Jia-Jie
Zhu (WIAS Berlin) and Prof. Michael Hintermüller (WIAS/
Humboldt-Universität
zu Berlin). The initial funding will run for two years, starting
January 2022.
The applicants should have completed their Ph.D. degrees by the
starting date
of the project.</span></p>
<p
style="margin-left:.375in;margin-top:0pt;margin-bottom:6pt;font-family:Arial;font-size:11.0pt;color:#00000A">Motivated
by numerous partial differential
equations related practical applications, a pressing challenge for
data-driven
optimization and control systems is the ubiquitous distribution
shift, which
implies higher demand for the robustness of the machine learning
system design.
The project, funded by the Excellence Cluster MATH+: The Berlin
Mathematics
Research Center, aims to address the issue of data-driven robust
control and
optimization of dynamical systems under data distribution shifts,
using principled
tools from applied mathematics and statistical machine learning as
well as
reinforcement learning. We invite postdoctoral candidates whose
scholar
profiles are mainly theoretical and exhibit proven excellence in
research. We
specifically prefer two types of mathematical research
experiences:</p>
<ol
style="direction:ltr;unicode-bidi:embed;margin-top:0in;margin-bottom:
0in;font-family:Calibri;font-size:11.0pt;font-weight:normal;font-style:normal"
type="1">
<li style="margin-top:0;margin-bottom:0;vertical-align:middle;
margin-top:0pt;margin-bottom:6pt" value="1"><span
style="font-family:Arial;
font-size:11.0pt;font-weight:normal;font-style:normal;font-family:Arial;
font-size:11.0pt;color:#00000A">either in principled
statistical machine learning/reinforcement learning theory
(related to dynamical systems, time series, Markov decision
process (MDP), control theory). Those qualifications are
demonstrated, among others, by high-quality publications in
credible venues such as
NeurIPS/ICLR/AISTATS/ICML/CoLT/JMLR/L4DC/IEEE-CDC.</span></li>
<li
style="margin-top:0;margin-bottom:0;vertical-align:middle;margin-top:0pt;
margin-bottom:6pt"><span
style="font-family:Arial;font-size:11.0pt; color:#00000A">and/or
in applied mathematics, in optimization, numerical analysis,
optimal control, dynamical systems (PDEs and S(P)DEs),
data-driven modeling of dynamics, model predictive control
(MPC). Those qualifications are demonstrated, among others by
relevant publications in credible venues such as SIAM
OPT/CON/COAP/COCV/MathProg.</span></li>
</ol>
<p
style="margin-left:.375in;margin-top:0pt;margin-bottom:4pt;font-family:Arial;font-size:11.0pt;color:#00000A"><span
style="font-weight:bold">What we offer:</span></p>
<ul style="direction:ltr;unicode-bidi:embed;margin-top:0in;
margin-bottom:0in" type="disc">
<li style="margin-top:0;margin-bottom:0;vertical-align:middle"><span
style="font-family:Arial;font-size:11.0pt;color:#00000A">Close
mentorship: the postdoc candidate will receive responsible and
careful mentorship. We emphasize fostering a healthy
mentor-mentee relationship.</span></li>
<li style="margin-top:0;margin-bottom:0;vertical-align:middle"><span
style="font-family:Arial;font-size:11.0pt;color:#00000A">WIAS
Berlin is a premier research institution known for its
strength in optimization, optimal control, dynamical systems,
and applied mathematics in general. It has hosted flagship
conferences in mathematical optimization such as ICCOPT 2019.</span></li>
<li style="margin-top:0;margin-bottom:0;vertical-align:middle"><span
style="font-family:Arial;font-size:11.0pt;color:#00000A">A
certified (Audit berufundfamilie) family-friendly work
environment.</span></li>
<li
style="margin-top:0;margin-bottom:0;vertical-align:middle;margin-top:0pt;
margin-bottom:6pt"><span
style="font-family:Arial;font-size:11.0pt; color:#00000A">Berlin
is one of the most culture-rich and diverse international
cities in the world. It offers endless opportunities to enjoy
life outside work, while being very affordable compared to
other major cities. Neither the job nor living in Berlin
requires German language (although WIAS offers free German
courses). We highly welcome international applications.
Scientifically, Berlin offers a rich landscape with numerous
opportunities for research, as well as job prospects in
academia and industry.</span></li>
</ul>
<p
style="margin-left:.375in;margin-top:0pt;margin-bottom:6pt;font-family:Arial;font-size:11.0pt"><span
style="color:#00000A">Please direct scientific queries
to Dr. J.-J. Zhu (</span><a href="mailto:Zhu@wias-berlin.de"
class="moz-txt-link-freetext">Zhu@wias-berlin.de</a><span
style="color:#00000A">).</span></p>
<p
style="margin-left:.375in;margin-top:0pt;margin-bottom:4pt;font-family:Arial;font-size:11.0pt;color:#00000A">The
envisioned starting date is as soon as
possible and the appointment is limited until December 31, 2023.
The work
schedule is 39 hours per week, and the salary is according to the
German TVoeD
Bund scale.</p>
<p
style="margin-left:.375in;margin-top:0pt;margin-bottom:4pt;font-family:Arial;font-size:11.0pt;color:#00000A"> </p>
<p
style="margin-left:.375in;margin-top:0pt;margin-bottom:4pt;font-family:Arial;font-size:11.0pt;color:#00000A">The
Weierstraß Institute is an equal
opportunity employer. We explicitly encourage female researchers
to apply for
the offered position. Among equally qualified applicants, disabled
candidates
will be given preference.</p>
<p
style="margin-left:.375in;margin-top:0pt;margin-bottom:4pt;font-family:Arial;font-size:11.0pt;color:#00000A"><span
style="font-weight:bold"> </span></p>
<p
style="margin-left:.375in;margin-top:0pt;margin-bottom:4pt;font-family:Arial;font-size:11.0pt;color:#00000A"><span
style="font-weight:bold">How to apply:</span></p>
<p
style="margin-left:.375in;margin-top:6pt;margin-bottom:6pt;font-family:Arial;font-size:11.0pt"><span
style="color:#00000A">Please upload complete
application documents including a cover letter, curriculum
vitae(CV), relevant
certificates, and the Ph.D. thesis (as draft if not finalized)
as soon as
possible via our online </span><a
href="https://short.sg/j/22924556">job-application
facility</a><span style="color:#00000A"> using the button “</span><a
href="https://short.sg/a/22924556">Apply online</a><span
style="color:#00000A">”.
</span></p>
<p
style="margin-left:.375in;margin-top:6pt;margin-bottom:6pt;font-family:Arial;font-size:11.0pt;color:#00000A"><span
style="font-weight:bold">The
advertisement is open with immediate effect and will remain open
until the
position will be filled.</span></p>
<p
style="margin-left:.375in;margin-top:0pt;margin-bottom:4pt;font-family:Arial;font-size:11.0pt;color:#00000A"><span
style="font-weight:bold"> </span></p>
<p
style="margin-left:.375in;margin-top:0pt;margin-bottom:4pt;font-family:Arial;font-size:11.0pt;color:#00000A"><span
style="font-weight:bold">We are looking
forward to your application!</span></p>
<p
style="margin-left:.375in;margin-top:0pt;margin-bottom:6pt;font-family:Arial;font-size:11.0pt;color:black"> </p>
<p
style="margin:0in;margin-left:.375in;font-family:Arial;font-size:11.0pt"><span
style="font-weight:bold">See here for more information: </span><a
href="https://short.sg/j/22924556" class="moz-txt-link-freetext">https://short.sg/j/22924556</a><span
style="font-weight:bold"><span style="mso-spacerun:yes"> </span></span></p>
<pre class="moz-signature" cols="72">--
Administration
Weierstrass Institute for Applied Analysis and Stochastics
Mohrenstrasse 39
10117 Berlin, Germany
Phone: +49 (0)30 20372 557
Fax: +49 (0)30 20372 329
URL: <a class="moz-txt-link-freetext" href="http://www.wias-berlin.de/~sill/?lang=1">http://www.wias-berlin.de/~sill/?lang=1</a>
</pre>
</body>
</html>