<div dir="ltr"><div class="gmail_default" style="font-family:tahoma,sans-serif">Dear all</div><div class="gmail_default" style="font-family:tahoma,sans-serif"><br></div><div class="gmail_default" style="font-family:tahoma,sans-serif">Apologies for cross-posting.</div><div class="gmail_default" style="font-family:tahoma,sans-serif"><br></div>This Special Issue invites authors to submit articles focusing on
optimization methods that rely on learning techniques to address
problems in logistics and transportation. Theoretical papers are
acceptable, provided that they have case studies/numerical examples in
the logistics/transportation field; models and algorithms that utilize
learning to better understand the problem structure, physics, and
behavior fall in the scope of the special session. We are particularly
interested in contributions that are comprehensive enough to also cover
or address problems in logistics and supply chains, that consider
sustainability, IoT, electric vehicles, energy efficiency, and other
relevant areas. We welcome both original research and review articles.
Possible contributions may include, but are not limited to, the
following topics:<div class="gmail_default" style="font-family:tahoma,sans-serif">
<p>§ Enhancing classical methods via ML</p>
<p>§ Markov Decision Process</p>
<p>§ Neural methods</p>
<p>§ Learning for primal-dual techniques</p>
<p>§ Reinforcement learning based methods,</p>
<p>§ Novel classes of methods.</p>
<p><strong>Manuscript submission information:</strong></p>
<p>Submission process and papers must adhere to the standard author guidelines of <em>Transportation Research Part E: Logistics and Transportation Review</em>, which can be found at: <a href="https://www.elsevier.com/journals/transportation-research-part-e-logistics-and-transportation-review/1366-5545/guide-for-authors">https://www.elsevier.com/journals/transportation-research-part-e-logistics-and-transportation-review/1366-5545/guide-for-authors</a></p>
<p>Submitted articles must not have been previously published or
currently submitted for journal publication elsewhere. Please follow the
submission guidelines, which can be found from the journal website: <a href="https://www.editorialmanager.com/tre/default1.aspx">https://www.editorialmanager.com/tre/default1.aspx</a></p>
<p>All submissions to the Special section should be submitted via the <em>Transportation Research Part E</em>
online submission system. When you submit your paper to the Special
section, please choose article type “MLOPT23” Otherwise, your submission
will be handled as a regular manuscript. Papers submitted to the
Special section will be subjected to normal thorough double-blind review
process.</p>
<p><strong>Keywords:</strong></p>
<p>Logistics, transportation systems, machine learning, optimization, combinatorial optimization, solution methods</p>
<p>Learn more about the benefits of publishing in a special issue: <a href="https://www.elsevier.com/authors/submit-your-paper/special-issues">https://www.elsevier.com/authors/submit-your-paper/special-issues</a></p><p>
</p><p><strong>Guest editors:</strong></p>
<ul><li>Shahin Gelareh - Universite d’Artois, Bethune, France ( <a href="mailto:shahin.gelareh@univ-artois.fr">shahin.gelareh@univ-artois.fr</a> )</li></ul>
<ul><li>Nelson Maculan - Federal University of Rio de Janiero (<a href="mailto:maculan@cos.ufrj.br">maculan@cos.ufrj.br</a>)</li></ul>
<ul><li>Rahimeh Neamatian Monemi - Predictim Globe (<a href="mailto:contact@predictim-globe.com">contact@predictim-globe.com</a>)<br></li></ul>
<ul><li>Pedro Henrique González - Federal University of Rio de Janeiro ( <a href="mailto:pegonzalez@cos.ufrj.br">pegonzalez@cos.ufrj.br</a>)</li></ul>
<ul><li>Xiaopeng Li - University of Wisconsin-Madison, Madison, WI, United States ( <a href="mailto:xli2485@wisc.edu">xli2485@wisc.edu</a> )</li></ul>
<ul><li>Fatmah Almazkoor - University of Kuwait ( <a href="mailto:fatmah.almazkoor@ku.edu.kw">fatmah.almazkoor@ku.edu.kw</a>)</li></ul>
<ul><li> Ran Yan - School of Civil and Environmental Engineering, Nanyang Technological University ( <a href="mailto:ran.yan@ntu.edu.sg">ran.yan@ntu.edu.sg</a> )</li></ul>
<p><b>Deadline: Feb 1, 2024</b><br></p>
</div></div>