<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0cm;
font-size:11.0pt;
font-family:"Calibri",sans-serif;
mso-ligatures:standardcontextual;}
span.EmailStyle17
{mso-style-type:personal-compose;
font-family:"Calibri",sans-serif;
color:windowtext;}
.MsoChpDefault
{mso-style-type:export-only;}
@page WordSection1
{size:612.0pt 792.0pt;
margin:72.0pt 72.0pt 72.0pt 72.0pt;}
div.WordSection1
{page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-US" link="#0563C1" vlink="#954F72" style="word-wrap:break-word">
<div class="WordSection1">
<p class="MsoNormal">The Business Analytics Section at the Amsterdam Business School (University of Amsterdam) invites applications for a PhD position in operations research with a computer science orientation. We are looking for candidates with the ambition
to work and succeed at the highest international academic level.<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">In recent years, there has been a rising demand for transparent and explainable machine learning (ML) models. Although significant progress has been made in generating different types of explanations for ML models, this topic has received
minimal attention in the operations research (OR) community, due to a larger focus by the public on societal effects of data-driven ML models. However, algorithmic decisions in OR are made by complex algorithms, which also lack explainability. The main goal
of this PhD project is to build the foundation for explainable decision making.<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">In this research, the candidate will define a general mathematical framework for explainable decision making and introduce models to provide explanations for different classes of optimization problems. Solution algorithms will be developed
and tested on real-world instances of operations research problems.<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">For more information: https://vacatures.uva.nl/UvA/job/PhD-in-Explainable-Decision-Making/786835302/<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">If you have any questions, please contact Jannis Kurtz: j.kurtz@uva.nl<o:p></o:p></p>
</div>
</body>
</html>