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This paper describes an attempt to solve the one-dimensional cutting stock problem exactly, using col-
umn generation and branch-and-bound. A new formulation is introduced for the one-dimensional cut-
ting stock problem that uses general integer variables, not restricted to be binary. It is an arc ¯ow
formulation with side constraints, whose linear programming relaxation provides a strong lower bound.
In this model, a cutting pattern, which corresponds to a path, is decomposed into single arc variables.
The decomposition serves the purpose of showing that it is possible to combine the branch-and-bound
method with variable generation. Computational times are reported for one-dimensional cutting stock
instances with a number of orders up to 30. # 1998 IFORS. Published by Elsevier Science Ltd.
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INTRODUCTION

The one-dimensional cutting stock problem under consideration consists of determining the

smallest number of rolls of width W that have to be cut in order to satisfy the demand of m cli-

ents with orders rof bi rolls of width wi, i= 1,2, . . . ,m.

According to Dyckho�'s system (Dyckho�, 1990), this problem is classi®ed as 1/V/I/R, which

means that it is a one-dimensional problem with an unlimited supply of rolls of identical size

and a set of orders that must be ful®lled. The second entry in the classi®cation, V, comes from

Verladeproblem, which, in German, stands for problems where all items have to be combined to

patterns which are assigned to a selection of large objects. In this case, the large objects are

identical. The last entry means that there are relatively few di�erent ®gures, even though the

number of demanded items may be very large. This typically happens in cutting stock problems

where there is a small set of di�erent item sizes which are ordered in large quantities.

A combination of orders in the width of the roll is called a cutting pattern. Let xj be a de-

cision variable that designates the number of rolls to be cut according to cutting pattern j. The

A matrix describes each cutting pattern, that is, each column Aj=(a1j, . . . ,aij, . . . ,amj)
T de®nes a

cutting pattern. The element aij represents the number of rolls of width wi obtained in cutting

pattern j.

The cutting stock problem is an integer programming problem that can be modelled as fol-

lows:

min
X
j2J

x j �1�

Subj: to
X
j2J

aijx jrbi, i � 1,2, . . . ,m �2�

xjr0 and integer, 8j 2 J �3�
where J is the set of valid cutting patterns. For the cutting pattern to be valid:
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Xm
i�1

aijwiRW

aijr0 and integer, 8j 2 J

The solution of the linear programming relaxation of this model may present some di�culties.
If, for small instances, it is possible to enumerate all the possible patterns and to ®nd the opti-
mal solution, for larger instances, this method is impractical. Even for moderately sized
instances, the number of columns can be in the order of the hundreds of million. To tackle this
problem, Gilmore and Gomory (1963) introduced a column generation procedure. At each iter-
ation, the information given by the dual variables is used to evaluate which columns are still
attractive to the main problem (restricted master problem). Usually, the single most attractive
column is added to the main problem. It can be determined by solving a subproblem, which is a
knapsack problem.

To obtain integer solutions to the cutting stock problem, heuristic methods are usually used.
Just to mention a few examples, Gilmore and Gomory (1963) suggested rounding up and down
the fractional solution as a fast method of obtaining a discrete solution. Stadtler (1990) used a
more elaborate procedure in a problem arising in the aluminium industry. The heuristic, at each
iteration, rounds up the variable with the larger fractional part, ®xes that variable and reopti-
mizes the problem. If overproduction occurs, some variables are decremented, which can lead to
underproduction. In this case, the missing orders are combined using a ®rst ®t decreasing (FFD)
heuristic.

There are also some references with exact methods to approach the integer problem. In a pro-
blem where the ratio between the width of the rolls and the average width of the orders is small,
being the number of possible cutting patterns, typically, a couple of hundreds, Goulimis (1990)
enumerated the entire set of columns and used the ChvaÂ tal ± Gomory cutting plane technique,
resorting to branch-and-bound when necessary. In a di�erent setting, Vance et al. (1994) devel-
oped an exact procedure, based on column generation and branch-and-bound, for the binary
cutting stock problem. In the binary case, the demand for each order is restricted to be equal to
one.

Procedures that combine column generation and branch-and-bound were used in other pro-
blems, as, for instance, in a routing problem with time windows (Desrosiers et al., 1984) and in
the edge colouring problem (Nemhauser and Park, 1991). In general, the implementation of pro-
cedures that combine the two methods has to overcome a crucial di�culty: the problem looses
its ``structure'' as the branching constraints are added to the restricted master problem; and the
type of subproblem that has to be solved in each iteration may change.

In the case of the cutting stock problem, for the formulation under consideration, after sol-
ving the root node of the search tree, which corresponds to solving the linear programming
relaxation, it may be necessary to introduce branching constraints in the restricted master pro-
blem. The column generated while solving the linear programming relaxation may be su�cient
to obtain an integer solution with an objective value equal to the integer round up of the objec-
tive value of the fractional solution, which clearly guarantees that the integer solution is opti-
mal. However, it may happen that, deep in the branch-and-bound tree, a set of columns that
were not generated is necessary to obtain the optimal solution for that node, and if that set is
missing the solution obtained may be non-optimal. Therefore, it may be necessary to generate
new columns during the branch-and-bound phase.

The generation of columns at each node of the branch-and-bound tree occurs after the intro-
duction of branching constraints in the restricted master problem. Under these circumstances,
the subproblem is changed, and the optimal solution of the original knapsack problem may be a
column that should not be introduced in the restricted master problem. In fact, it may happen
that a particular column that was set to zero by a branching contraints turns out to be most
attractive column generated by the subproblem. To overcome this di�culty, Vance et al. (1994)
added generalized upper bounding constraints to the knapsack subproblem, and solved the
modi®ed problem, but eventually the subproblem completely looses its structure and has to be
solved as a general integer programming problem.
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In this article, an arc ¯ow formulation with side constraints for the cutting stock problem is
introduced. The model has a set of ¯ow conservation constraints and a set of constraints to
ensure that the demand is satis®ed. The corresponding path ¯ow formulation is equivalent to
the classical formulation for the cutting stock problem. Path formulations are usually preferred
to arc formulations, because they require less computational space [see Ahuja et al. (1993) chap-
ter 17].

Arc ¯ow formulation was used because it allows column generation at any node in the
branch-and-bound tree, and the implementation of the algorithm involves modi®cations to the
subproblem, after solving the linear programming model, that are conceptually simpler. During
the solution of the linear programming relaxation, to accelerate the column generation pro-
cedure, instead of producing the most attractive arc, the subproblem generates sets of arcs,
which correspond to valid paths, viz. cutting patterns.

Arc ¯ow formulations usually have a large number of ¯ow conservation constraints. A key
issue is that the sets of arcs can be evaluated without considering explicitly these constraints.
Actually, the model starts with all the ¯ow conservation constraints relaxed, and only those that
correspond to the arcs introduced in the restricted master problem are considered. A signi®cant
number of ¯ow conservation constraints has never to be considered during the solution.

In Section 2, the formulation is introduced and some criteria are presented to reduce the num-
ber of variables and also the valid inequalities that are used to tighthen the formulation.
Section 3 describes the solution of the linear programming relaxation using a column generation
procedure, and shows the subproblem to be solved. In Section 4 the branch-and-bound pro-
cedure, the branching rules and the articulation of this process with the column generation pro-
cedure are presented. Section 5 describes some details of the implementation and the
computational results obtained in the solution of some test problems.

MATHEMATICAL FORMULATION

Given rolls of an integer width W and a set of orders of width w1, w2, . . . , wm, the problem of
determining a single valid cutting pattern can be modelled as the problem of ®nding a path in
an acyclic directed graph with W + 1 vertices. Consider a graph G = (V, A) with
V = {0, 1, 2, . . . , W} and A = {(k, l): 0Rk< lRW and lÿ k= wi for every iRm}, meaning
that there exists a directed arc between two vertices if there is an order of the corresponding
width.

Consider additional arcs between (k, k+ 1), k= 0, 1, . . . , Wÿ 1 corresponding to unoccupied
portions of the roll, that is, trim loss. There is a valid cutting pattern i� there is a path between
vertices 0 and W. The arcs that constitute the path de®ne the cutting pattern.

Example 2.1. Figure 1 shows the graph associated with an instance with W = 5 and
orders of width 3 and 2. In the same ®gure, a path is shown that corresponds to 2 units of
width 2 and 1 unit of trim loss.q

This kind of formulation has already been used to model knapsack problems as the problem
of determining the longest path in a directed graph (Papadimitriou and Steiglitz, 1982).
Likewise, it can be used to model cutting stock problems. If one cutting pattern corresponds to
the ¯ow of one unit between vertices 0 and W, a path carrying a larger ¯ow will correspond to
cutting the same cutting pattern multiple times.

By the ¯ow decomposition properties [see, for instance Ahuja et al. (1993)], non-negative
¯ows can be represented by paths and cycles. The graph G is acyclic and, therefore, any ¯ow
can be decomposed in directed paths connecting the only excess node (node 0) to the only de®cit
node (node W).

The problem is formulated as the problem of determining the minimum ¯ow between vertice
0 and vertice W with additional constraints enforcing that the sum of the ¯ows in the arcs of
each order must be greater or equal to the demand. Consider decision variables xij, associated
with the arcs de®ned above, which correspond to the number of items of width jÿ i placed in
any cutting pattern at the distance of i units from the left border of the roll.

min z �4�
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subj: to�
X

ij�i, j �2A
xij ÿ

X
kj� j, k�2A

xjk �
�ÿz, if j � 0

0, if j � 1, 2, . . . , W ÿ 1
z, if j �W

�5�

X
kj�k, k�wi �2A

xk, k�wi
rbi, i � 1, 2, . . . , m �6�

xijr0 and integer, 8�i, j � 2 A �7�

The matrix that de®nes this problem does not have, in general, any special property that guar-
antees that the basic solutions obtained are integer, and it may be necessary to resort to branch-
and-bound after solving the linear programing relaxation. The solution thus obtained has inte-
ger values of ¯ow in every arc, and, by the ¯ow decomposition property referred above, can be
transformed into an integer solution to the one-dimensional cutting stock problem.

The lower bound provided by the linear programming relaxation of this model is as good as
the one provided by the classical formulation:

Preposition 2.1. The optimum of the linear programming equations [4]±[7] is at least as
good as the optimum of the linear relaxation of the classical model in equations [1]±[3].

Proof. It follows from the fact that the optimal fractional solution to equations [4]±[7]
gives a valid solution to formulation equations [1]±[3] which, being a minimization problem, will
have an optimum equal or smaller.q

This bound is known to be very tight. Most of the cutting stock instances have gaps smaller
than one, which is commonly referred as the integer round-up property (Marcotte, 1985, 1986).
Nevertheless, several instances and families of instances, are known with gaps slightly >1
(Fieldhouse, 1990). Using the criteria referred below, that strengthen the formulation, the dua-
lity gap was bridged and gaps >1 have never arisen.

Enumeration of columns and reduction criteria

Using the variables presented thus far, for each cutting pattern, there are many alternative sol-
utions with exactly the same items, but placed in di�erent positions. Applying the Criteria pre-
sented below, the solution in which the items are placed in the cutting pattern in positions that
correspond to decreasing values of width is searched, thus reducing the symmetry of the solution
space and the size of the model.

Fig. 1. Graph and a cutting pattern.
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Criterion 1. An arc of order j, designated by xk, k + wj, can only have its tail at a node k
that is the head of another arc of order i, xk ÿ i, k, for wi>wj, or else, from node 0, that is, the
left border of the roll.

In particular, if the cutting pattern has any trim loss, because items are to be placed in order
of decreasing width, the trim loss will appear last in the cutting pattern. A cutting pattern can
never start with trim loss.

Criterion 2. All the trim loss arcs xi, i + 1 can be set at zero for i < wm.
Criterion 3. In a cutting pattern, the number of consecutive arcs corresponding to a

single order must be smaller or equal to the required demand for that order.
Let zLP be the optimal value of the linear programming relaxation and dzLPe the smallest inte-

ger greater or equal to zLP. After solving the linear programming relaxation, the model can be
strengthened by introducing a valid inequality that forces the number of trim loss arcs to be
greater than or equal to Tmin.

De®nition 2.1. The minimum trim loss Tmin � dzLPeW ÿ
Pm

i�1 wibi.
The loss will be equal to this value if the instance has the integer round-up property, as it

happens in the generality of the cutting stock instances.
Proposition 2.2. The constraint

P
�k, k�1�2A xk, k�1rTmin is a valid inequality for the inte-

ger programming problem.
Example 2.2. Consider a cutting stock problem with rolls of width W = 7 and demands

w = (5, 3, 2), and quantities b = (1, 3, 2). The linear programming formulation of this instance
and the corresponding underlying graph are shown in Fig. 2. The model has a redundant con-
straint concerning trim loss that can be strengthened after solving the linear programming relax-
ation.

According to Criterion 3, it should be pointed out that the arc x46 is not a valid arc for this
particular instance, because the demand for items of width 2 is only 2. These items must be
placed after rolls of width 5 or 3, or at the beginning of the cutting pattern, from vertex 0. In
either case, an item of width 2 can never be placed at a distance of 4 units from the left border
of the roll. The number of ¯ow conservation constraints can be smaller than the value of the
width of the rolls. In this example, there is no ¯ow conservation constraint for vertex 1.

The solution of the linear programming relaxation has an optimal value of 2.75. This instance
has the integer round-up property, and its optimal solution is equal to 3. Therefore, the mini-
mum trim loss Tmin=3. If an optimal solution with the integer round-up property is searched,
then the variables x23=x34=0 can be ®xed, and the trim loss inequality can be tightened, lifting
its right hand side, which becomes x45+x56+x67r3.q

It can be shown that there exists a solution to the linear programming relaxation in which all
the demand constraints are observed without slack (de Carvalho, 1995). As a corollary, this
valid inequality, which imposes a lower bound to the value of the trim loss, forces the objective
value to be integer.

As a rule, it is not possible to establish an upper bound on the gap between the values of the
optimal solutions of the integer problem and its linear programming relaxation. In the one-
dimensional cutting stock problem, it happens that almost all the instances have a gap smaller
than unity. This property is known as the integer round-up property (Marcotte, 1985).
Therefore, most of the instances will have a trim loss equal to Tmin. However, if the instance
does not have the integer round-up property, the amount of loss has to be increased by W
units.

Fig. 2. Linear programming model and the underlying graph.
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LINEAR PROGRAMMING RELAXATION

At each iteration, a subproblem is solved and a set of arcs (columns) is introduced in the
restricted master problem. Let uj, j = 0, 1, . . . ,W, be the dual variables associated with the ¯ow
conservation constraints and vk, k = 1, 2, . . . , m, the dual variables associated with the demand
constraints. Each column, which corresponds to arc (i, j), has only three nonzero elements, that
is, aÿ 1 in row i, a + 1 in row j and a + 1 in the demand row k, corresponding to the ordered
width wk=jÿ i.

Let B be the current basis of the restricted master problem and cBB
ÿ1 the corresponding dual

solution. Let Aij be the column corresponding to variable xij. Column Aij is attractive if its
reduced cost cBB

ÿ1Aijÿcij is >0, being all cij=0. The reduced cost of a single column is equal to
�cij � ÿui � uj � vk.

To accelerate the generation procedure, instead of generating a single arc, sets of arcs are gen-
erated at each iteration. Let P = (0, a)(a, b) . . .(y, z)(z, W) be a directed path starting at node 0
and ending at node W.

Proposition 3.1. The reduced cost of a path P is equal to �cP �
P
�i, j �2P vk ÿ 1.

Proof. The reduced cost of a path �cP �
P
�i, j �2P �cij �

P
�i, j �2Pÿui � uj � vk. The ¯ow

conservation dual variables cancel out for all nodes, except for the two terminal nodes. There-
fore, �cP � ÿu0 � uW �

P
�i, j �2P vk. The two former terms correspond to a column which is sym-

metrical to column z, and, therefore, contribute to the reduced cost with a value of ÿ1.q
Corollary 3.1. The set of columns that correspond to path P is attractive ifP

�i, j �2P vk > 1.
To determine the most attractive set of columns, a subproblem is solved, which is the longest

path in an acyclic digraph with arc costs that depend on the value of the dual variables. This
result has a well known equivalent in the classical cutting stock formulation. It is important
because it allows the evaluation of a set of columns without considering explicitly the ¯ow con-
servation constraints.

At each iteration, if an arc (i, j) is part of an attractive path, the algorithm checks if the ¯ow
conservation constraints for nodes i and j, respectively, have already been considered. If not,
new constraints are considered in the model. The model grows in two directions as columns and
¯ow conservation constraints are added to it.

BRANCH-AND-BOUND

The procedure developed is oriented to a problem where the gaps are almost always strictly <1,
and can be reduced to zero by introducing the valid inequality referred in Proposition 2.2. The
optimization problem is solved as a sequence of decision problems, in which we want to ®nd if
there is, or there is not, an integer solution with an objective value equal to the smaller known
lower bound, which will be always an integer value, denoted as ZLB.

The ®rst decision problem to be solved is to determine if there is an integer solution of value
dzLPe, that is, ZLB=dzLPe. As we know, most of the cutting stock problem instances have the
integer round-up property, meaning that almost always the solution to this decision problem
will provide an optimal integer solution to the optimization problem.

However, if an integer solution is not found in the search tree, meaning that the instance does
not have the integer round-up property, the lower bound has to be increased by one unit, that
is, ZLB=ZLB+1, and the procedure has to be repeated. Clearly, the ®rst integer solution found
is optimal. The application of this method can only be justi®ed in problems with minuscule
gaps, and its use is not reasonable in general integer programming problems.

Branching constraints are imposed on single variables of the master problem, starting from
variables that correspond to larger widths and are placed nearer the left border of the roll, that
is, the fractional variable with the smaller value i, and to break ties the one with larger {jÿ i}.
A depth ®rst search is performed, using branching constraints of the following type:
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xijr�xij � and xijR�xij �

In each node of the search tree, there is a need to determine if there is any solution with
objective value ZLB. If not, the node is fathomed. This can only be done when the generation
procedure fails to produce more attractive variables and the objective function value of the
restricted master problems is strictly larger than ZLB.

After a branching constraint is added, the restricted master problem is reoptimized, and one
of the following cases occurs:

1. the solution is integer, with value equal to ZLB, which means that it is optimal;
2. the solution is fractional, with value equal to ZLB, being necessary to introduce new branch-

ing constraints;
3. the solution has a value that is strictly greater than ZLB. The column generation procedure is

called trying to reach a solution with value ZLB, leading either to case (1) or (2). If this is not
possible, the node is fathomed.

Figure 3 presents a ¯owchart for the column generation/branch-and-bound procedure.
During the branch-and-bound phase, there may be arc variables that have to be brought to

the restricted master problem to guarantee that an optimal solution is found. The branching
constraints are imposed on the variables that belong to the restricted master problem.
Therefore, the expression for the evaluation of the reduced cost of the variables that are out of
the restricted master problem is not changed. At any node of the branch-and-bound tree, under
case (3) described above, arcs (variables) may be priced out, and those that are attractive are
introduced in the restricted master problem.

Depending on the set of branching constraints introduced in the restricted master problem,
some variables can be ignored according to the following criteria.

Criterion 1. Variables (arcs) set to zero in the restricted master problem should not be
regenerated by the subproblem.

Criterion 2. Suppose there is a lower bound on a single arc, or a set of lower bounds on
arcs that belong to the same order, which sum up the required demand. As a solution is
searched without overproduction, all the remaining arcs belonging to that order can be set to
zero in the restricted master problem, and not regenerated by the subproblem.

In the cutting stock problem, a cutting pattern corresponds to a path between vertices 0 and
W. The decomposition of the path into single arcs serves the purpose of showing that it is poss-
ible to combine the branch-and-bound method with variable generation to solve cutting stock
problems exactly. It can be used to solve problems with general integer variables, not restricted
to being binary.

COMPUTATIONAL RESULTS

The algorithm was tested in a set of test problems provided by WaÈ scher and Gau (1993). The
instances selected have orders of integer width. Although the model can be used in instances
with rational values, the resulting models are larger, because it is necesssary to discretize the
values. The solution of some instances are reported from the PIE group, which have integer
widths up to 200 and a number of orders up to 30. The number of orders and the width of the
rolls are indicated in the ®rst two columns in Table 1.

The procedure calls the XMP routines, described in Marsten (1981) which use the revised sim-
plex method and the factorization of the inverse. Lower and upper bounds are dealt implicitly,
which enables an easy implementation of the branch-and-bound procedure.

Computational tests were run in a 40 MHz PC 486 DX, with 4 Mb of RAM memory. The al-
gorithms were coded in Fortran and compiled using Salford FTN77 under DBOS (Salford,
1995).

During a pre-processing phase, all the possible arcs are enumerated according to the criteria
presented in Section 2. Then, the initial solution is set. For each order, the following variables
are selected: x0k, xk, 2k, . . . , x(s ÿ 1)k, sk, where skRW and (s+ 1)k>W. For each instance, the
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Fig. 3. Column generation/branch-and-bound procedure.

Table 1. Characteristics of the problems

Orders Width Arcs Constraints

PIE64-1 7 215 501 209
PIE64-2 7 215 501 209
PIE64-3 7 215 707 219
PIE64-4 7 215 707 219
PIE64-5 10 148 376 131
PIE64-6 20 150 268 124
PIE64-7 20 150 639 144
PIE64-8 30 182 250 146
PIE64-9 30 182 250 146
PIE64-10 30 182 1226 186
PIE64-11 30 182 1226 186
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number of arcs (variables) and the number of constraints, which are determined by enumer-
ation, are indicated in the last two columns in Table 1.

In Table 2, the data related to the solution is presented. It can be veri®ed that only a small
fraction of the possible columns are used in the solution. The meaning of each column is as
follows:

cols lp Number of columns generated while solving the linear programming relaxation;
cols bb Number of columns generated during the branch-and-bound phase;
vert bb Number of vertices explored in the branch-and-bound phase;
tpp Preprocessing time (seconds);
tlp Linear relaxation solution time (seconds);
tbb Branch-and-bound time (seconds);
ttot Total time (seconds);
z* Optimum value.

In most instances, it was not necessary to generate extra columns during the branch-and-
bound phase, because the columns generated while solving the linear programming relaxation
were su�cient to build an integer optimal solution.

CONCLUSIONS

A new model and an exact procedure for the one-dimensional cutting stock problem was pre-
sented. Its application is not restricted to the binary case, where all the quantities demanded are
equal to one.

As the relaxation is very tight, the branch-and-bound tree are tractable. The formulation is
particularly sensitive to the width of the rolls, because the size of the subproblem and of the
restricted master problem grow with the width of the rolls.

The dimensions of the restricted master problem grow in two directions. At ®rst, all the ¯ow
conservation constraints are relaxed. As the algorithm proceeds, sets of variables are added to
the main problem and the ¯ow conservation constraints that correspond to those variables are
considered.
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