SoPlex version 8.0.0 [mode: optimized] [precision: 8 byte] [rational: GMP 6.3.0] [PaPILO: not available] [githash: 8.0.0.0] Copyright (c) 1996-2024 Zuse Institute Berlin (ZIB) int:readmode = 1 real:feastol = 0.00000000e+00 real:opttol = 0.00000000e+00 Reading (rational) LP file <40-80-10-10-19.mps> . . . Reading took 0.04 seconds. LP has 121 rows 121 columns and 14641 nonzeros. Initial floating-point solve . . . Simplifier removed 1 rows, 0 columns, 121 nonzeros, 0 col bounds, 1 row bounds Reduced LP has 120 rows 121 columns 14520 nonzeros Equilibrium scaling LP type | time | iters | facts | shift | viol sum | viol num | obj value L | 0.0 | 0 | 1 | 0.00e+00 | 4.98e+01 | 68 | 1.00000000e+00 L | 0.0 | 73 | 13 | 0.00e+00 | 1.41e+08 | 44 | 6.75877722e+12 L | 0.0 | 123 | 22 | 0.00e+00 | 2.78e+07 | 41 | 9.84544589e+14 Floating-point infeasible. Setting up LP to test for feasibility. Initial floating-point solve . . . Simplifier removed 1 rows, 0 columns, 198 nonzeros, 0 col bounds, 2 row bounds Reduced LP has 120 rows 122 columns 14562 nonzeros Equilibrium scaling LP L | 0.0 | 0 | 1 | 0.00e+00 | 3.12e+01 | 42 | -1.00000000e+00 L | 0.0 | 16 | 2 | 0.00e+00 | 1.00e+05 | 61 | -1.00000000e+00 L | 0.0 | 96 | 10 | 6.31e-06 | 3.66e+05 | 42 | 3.68879098e+00 Error while testing for infeasibility. Numerical troubles with initial precision solver. Disabling it and switching to multiprecision. No old basis available Current precision = 1e-57, Initial floating-point boosted solve . . . Boosted iteration 1 type | time | iters | facts | shift | viol sum | viol num | obj value | basis metric L | 0.0 | 0 | 2 | 0.00e+00 | 4.61e-01 | 31 | 1.00000000e+00 | 1.00e+00 L | 0.9 | 104 | 8 | 0.00e+00 | 1.90e+05 | 25 | 5.36347136e+25 | 3.42e+26 Store basis as old basis (from boosted solver) Floating-point infeasible. Setting up LP to test for feasibility. No old basis available Current precision = 1e-57, Initial floating-point boosted solve . . . Boosted iteration 1 L | 0.0 | 0 | 9 | 0.00e+00 | 4.61e-01 | 31 | -1.00000000e+00 | 1.00e+00 L | 0.0 | 23 | 11 | 0.00e+00 | 0.00e+00 | 0 | 0.00000000e+00 | 7.21e+09 Store basis as old basis (from boosted solver - testing feasibility) Floating-point optimal. Max. bound violation = 0, ofm = 1e0 Max. row violation = 0, ofm = 1e0 Max. reduced cost violation = 4588322152713079592763746266614149943864770105972486288160872030360901783917/14118526040679236771909999544897430148714581645246545593652179861129631117390284587008, ofm = 1e-10 Max. dual violation = 0, ofm = 1e0 Performing rational reconstruction . . . Reconstructed solution dual infeasible (4). Refined floating-point solve . . . L | 0.0 | 0 | 11 | 3.20e+00 | 0.00e+00 | 0 | 0.00000000e+00 | 7.21e+09 E | 0.0 | 0 | 11 | 0.00e+00 | 3.20e+00 | 34 | 0.00000000e+00 | 7.21e+09 E | 0.0 | 10 | 12 | 0.00e+00 | 1.17e+05 | 42 | 0.00000000e+00 | 3.59e+10 E | 2.0 | 210 | 61 | 8.34e-07 | 5.03e+06 | 13 | -6.91394449e+00 | 3.54e+22 L | 4.6 | 296 | 96 | 0.00e+00 | 0.00e+00 | 0 | 0.00000000e+00 | 2.11e+24 L | 4.6 | 296 | 96 | 0.00e+00 | 0.00e+00 | 0 | 0.00000000e+00 | 2.11e+24 Store basis as old basis (from boosted solver - testing feasibility) Floating-point optimal. Max. bound violation = 0, ofm = 1e0 Max. row violation = 0, ofm = 1e0 Max. reduced cost violation = 418596103488376790118261813923758317580826717416602752349110855046502710800785/3963383474939790522701867611107252326942392976794988975759184564908261376623421376289184134725632, ofm = 1e-19 Max. dual violation = 0, ofm = 1e0 Performing rational reconstruction . . . Reconstructed solution dual infeasible (4). Refined floating-point solve . . . L | 0.0 | 0 | 96 | 3.28e+00 | 0.00e+00 | 0 | 0.00000000e+00 | 2.11e+24 E | 0.0 | 0 | 96 | 0.00e+00 | 3.28e+00 | 17 | 0.00000000e+00 | 2.11e+24 E | 4.3 | 77 | 137 | 0.00e+00 | 1.24e+12 | 12 | 0.00000000e+00 | 2.02e+27 E | 6.6 | 114 | 153 | 0.00e+00 | 6.84e+08 | 9 | 0.00000000e+00 | 3.22e+27 E | 10.1 | 148 | 177 | 1.73e-06 | 4.74e+16 | 5 | -1.87174576e+11 | 5.04e+31 E | 12.5 | 175 | 190 | 1.73e-06 | 9.94e+03 | 2 | -2.05418545e+11 | 5.28e+33 L | 14.4 | 194 | 199 | 0.00e+00 | 0.00e+00 | 0 | 0.00000000e+00 | 1.07e+31 L | 14.4 | 194 | 199 | 0.00e+00 | 0.00e+00 | 0 | 0.00000000e+00 | 1.07e+31 Store basis as old basis (from boosted solver - testing feasibility) Floating-point optimal. Max. bound violation = 0, ofm = 1e0 Max. row violation = 0, ofm = 1e0 Max. reduced cost violation = 82162817132659885053368968818925991854175714091442669577416928079746052205/7388282294432828066013570723883374606179460725396946418214511492147991255563165676557880076896114311168, ofm = 1e-29 Max. dual violation = 0, ofm = 1e0 Performing rational reconstruction . . . Reconstructed solution dual infeasible (4). Refined floating-point solve . . . L | 0.0 | 0 | 199 | 1.76e+00 | 0.00e+00 | 0 | 0.00000000e+00 | 1.07e+31 E | 0.0 | 0 | 199 | 0.00e+00 | 1.76e+00 | 2 | 0.00000000e+00 | 1.07e+31 E | 0.2 | 2 | 199 | 0.00e+00 | 4.52e+26 | 2 | 0.00000000e+00 | 1.53e+35 E | 2.3 | 14 | 208 | 0.00e+00 | 1.54e+24 | 2 | 0.00000000e+00 | 2.07e+31 E | 4.4 | 24 | 219 | 0.00e+00 | 1.76e+00 | 2 | 0.00000000e+00 | 8.25e+30 E | 5.1 | 26 | 221 | 0.00e+00 | 4.52e+26 | 3 | 0.00000000e+00 | 1.51e+31 E | 7.3 | 40 | 231 | 0.00e+00 | 4.08e+26 | 2 | 0.00000000e+00 | 1.26e+39 E | 10.4 | 58 | 246 | 0.00e+00 | 0.00e+00 | 0 | -2.51084069e+58 | 2.11e+34 Store basis as old basis (from boosted solver - testing feasibility) Floating-point optimal. Max. bound violation = 0, ofm = 1e0 Max. row violation = 53604259932904646576376328572448848717087312008064078289535/581504157864466523786965533198907166545925577133617250847330029547509615476083223825481728, ofm = 1e-31 Max. reduced cost violation = 1849831933565358706496788822760476116093825318092010470377/292446082512735800023933888677231882716077025180126098801112053905946674291343331110310173729002481053181079608885248, ofm = 1e-59 Max. dual violation = 0, ofm = 1e0 Performing rational reconstruction . . . Reconstructed solution primal infeasible (4). Refined floating-point solve . . . L | 0.0 | 0 | 246 | 0.00e+00 | 0.00e+00 | 0 | -2.87070360e+01 | 2.11e+34 L | 0.0 | 0 | 246 | 0.00e+00 | 0.00e+00 | 0 | -2.87070360e+01 | 2.11e+34 Floating-point optimal. Max. bound violation = 0, ofm = 1e0 Max. row violation = 7028865094324735787821689945789610120195690723398240985248965/76662985854218613561474125313404274662723295688818976044118718259120484985429906190581150182015626393205100932991614451712, ofm = 1e-61 Max. reduced cost violation = 329097136529962710402151067728875847505409838562377269397/370719452031663838923756981436474471755485685569287898563509823770029564476646296187873359806562274234342164385911476016189744991865983091760693248, ofm = 1e-90 Max. dual violation = 0, ofm = 1e0 Performing rational reconstruction . . . Reconstructed solution primal infeasible (4). Refined floating-point solve . . . L | 0.0 | 0 | 246 | 0.00e+00 | 0.00e+00 | 0 | -7.49509051e-10 | 2.11e+34 L | 0.0 | 0 | 246 | 0.00e+00 | 0.00e+00 | 0 | -7.49509051e-10 | 2.11e+34 Floating-point optimal. Max. bound violation = 0, ofm = 1e0 Max. row violation = 1027867162377078115078173175642873966335308020185259817741245/97181880033388485390829350141683163923870039557875406881032719242370630150165966667873874033131460816887392340780377968788044511147716271606515170803712, ofm = 1e-91 Max. reduced cost violation = 2303922012455791108388653697508808641902078917928072450281/10025445032196671212168027794825108710149943842129494649814856640589248288458053290209489094580628276355254534900885436953658414767328025180190170735609529694522443089183584026624, ofm = 1e-121 Max. dual violation = 0, ofm = 1e0 Performing rational reconstruction . . . Reconstructed solution dual infeasible (4). Performing rational factorization . . . Tolerances reached. Primal feasible. Optimizing again. Numerical troubles with multiprecision solver. Increase precision. Load basis from old basis (in boosted solver) Current precision = 1e-85, Initial floating-point boosted solve . . . Boosted iteration 2 L | 0.0 | 0 | 247 | 0.00e+00 | 1.90e+05 | 25 | 5.36347136e+25 | 1.48e+28 L | 0.5 | 21 | 248 | 0.00e+00 | 0.00e+00 | 0 | 2.81474977e+33 | 1.35e+33 Store basis as old basis (from boosted solver) Floating-point optimal. Max. bound violation = 0, ofm = 1e0 Max. row violation = 1716140942221206381325125721819167193847605122123659216792096435/24955399041086788268709025167123787325105239482037427097694895266640782872861297588079801491541545049871452126624874496, ofm = 1e-55 Max. reduced cost violation = 1912110720551430873117317465267913135478578457632131162394207981645261883035398357664587407167457637645263428327521/218834139352766314088542155401048702554907006025230540758963397251265595444231875230823550982618215705339124576877339210921310909194173840955558350883283049068758040576, ofm = 1e-53 Max. dual violation = 0, ofm = 1e0 Performing rational reconstruction . . . Reconstructed solution primal infeasible (4). Refined floating-point solve . . . L | 0.0 | 0 | 248 | 0.00e+00 | 0.00e+00 | 0 | 1.67913544e-26 | 1.35e+33 L | 0.0 | 0 | 248 | 0.00e+00 | 0.00e+00 | 0 | 1.67913544e-26 | 1.35e+33 Floating-point optimal. Max. bound violation = 0, ofm = 1e0 Max. row violation = 6754508938022950647364635340416991126471133419080680720578650365/611904604015910108164552477711493451547237783333099038684988808629714861356082354138762762120399675070511141046196620907816065354451173411876841475562105083894192083080052736, ofm = 1e-110 Max. reduced cost violation = 435142494918141651766073671623581910215184845285921814790657/875336557411065256354168621604194810219628024100922163035853589005062381776927500923294203930472862821356498307509356843685243636776695363822233403533132196275032162304, ofm = 1e-108 Max. dual violation = 0, ofm = 1e0 Refined floating-point solve . . . L | 0.0 | 0 | 248 | 0.00e+00 | 0.00e+00 | 0 | 1.00168614e-85 | 1.35e+33 L | 0.0 | 0 | 248 | 0.00e+00 | 0.00e+00 | 0 | 1.00168614e-85 | 1.35e+33 Floating-point optimal. Max. bound violation = 0, ofm = 1e0 Max. row violation = 1679016228594880965865886424192279269503286388659617809214852345/5626446462538138252791882427960574830105311675564831204981255243454422807414245482306371829230425540111950527271968647301104776984316079500337285698138608984223559226025960049556903281061113326413972735638082762810849539146121216, ofm = 1e-165 Max. reduced cost violation = 1017562225167703101034440507465484142745862339409074296851509/10731594967914844995101704460068845424852965689782774362528334128292890181377879109013312967739916877960110716384827894785127214401847990990328380008961885422179335071613235568155104219553209927394814940715947652455996588032, ofm = 1e-163 Max. dual violation = 0, ofm = 1e0 Performing rational reconstruction . . . Reconstructed solution dual infeasible (3). Performing rational factorization . . . Tolerances reached. Solved to optimality. SoPlex status : problem is solved [optimal] Solving time (sec) : 34.82 Iterations : 915 Objective value : 2.81474977e+33